Langsung ke konten utama

Program linier

Kelas XI IPA 4
Pertemuan : 1xpertemuan ( 2 jam )
PROGRAM LINIER
Sistem Pertidaksamaan Linier Dua Variabel Pengertian Pertidaksamaan Linier Dua Variabel Pertidaksamaan linear dua variabel adalah kalimat terbuka matematika yang memuat dua variabel, dengan masing-masing variabel berderajat satu dan dihubungkan dengan tanda ketidaksamaan. Tanda ketidaksamaan yang dimaksud adalah >, <, ≥, atau ≤. Bentuk umum pertidaksamaan linear dua variabel sama dengan bentuk umum persamaan linear dua variabel. Seperti yang sudah disinggung sebelumnya, perbedaannya terletak pada tanda ketidaksamaan. Pada persamaan digunakan tanda “ = ”, sedangkan pada pertidaksamaan digunakan tanda “ >, <, ≥, atau ≤ “. Berikut bentuk umum dari pertidaksamaan linear dua variabel. ax + by > c ax + by < c ax + by ≥ c ax + by ≤ c Dengan : a = koefisien dari x, a ≠ 0 b = koefisien dari y, b ≠ 0 c = konstanta a, b, dan c anggota bilangan real. Penyelesaian dari suatu pertidaksamaan linear dua variabel berupa pasangan terurut (a, b) yang memenuhi pertidaksamaan linear dua variabel. Semua penyelesaian dari pertidaksamaan linear dua variabel disatukan dalam suatu himpunan penyelesaian. Himpunan penyelesaian dari suatu pertidaksamaan linear dua variabel biasanya disajikan dalam bentuk grafik pada bidang koordinat cartesius. Langkah-langkah yang harus diambil untuk menggambar kan grafik penyelesaian dari per tidaksama an linear dua variabel, hampir sama dengan langkah-langkah dalam menggambarkan grafik persamaan linear dua variabel. Berikut ini langkah-langkah mencari daerah penyelesaian dari pertidaksamaan linier dua variabel : Ganti tanda ketidaksamaan >, <, ≥, atau ≤ dengan tanda “ = “. Tentukan titik potong koordinat cartesius dari persamaan linear dua variabel dengan kedua sumbu. Titik potong dengan sumbu x, jika y = 0 diapit titik (x,0) Titik potong dengan sumbu y, jika x = 0 diapit titik (0,y) Gambarkan grafiknya berupa garis yang menghubungkan titik (x,0) dengan titik (0,y). Jika pertidaksamaan memuat > atau <,gmbarkan grafik tersebut dengan garis putus-putus Gunakanlah sebuah titik uji untuk menguji daerah penyelesaian pertidaksamaan Berikanlah arsiran pada daerah yang memenuhi himpunan penyelesaian pertidaksamaan Contoh : Gambarlah daerah himpunan penyelesaian pertidaksamaan 3x + 4y ≤ 12, x, y €R. Jawab: 3x + 4y ≤12, ganti tanda ketidaksamaan sehingga diperoleh garis 3x + 4y =12. Titik potong dengan sumbu x, y = 0 3x + 4(0) = 12 3x = 12 x = 4 Titik potong dengan sumbu y, x = 0 3(0) + 4y = 12 3x = 12 y = 3 Titik potong dengan sumbu koordinat di (4, 0) dan (0, 3). Diperoleh grafi k 3x + 4y =12. Ambil titik uji (0, 0) untuk mendapatkan daerah penyelesaian dari pertidaksamaan 3x + 4y ≤12 , diperoleh 3(0) + 4(0) ≤ 12 0 ≤ 12 (Benar) Dengan demikian, titik (0, 0) memenuhi pertidaksamaan 3x + 4y ≤ 12 Himpunan penyelesaian pertidaksamaan adalah daerah di bawah garis batas (yang diarsir). Sistem Pertidaksamaan Linier Dua Variabel Sistem pertidaksamaan linear dua variabel adalah suatu sistem yang terdiri atas dua atau lebih pertidaksamaan dan setiap pertidaksamaan tersebut mem punyai dua variabel. Langkah-langkah menentukan daerah penyelesaian dari sistempertidaksamaan linear dua variabel sebagai berikut. Gambarkan setiap garis dari setiap pertidaksamaan linear dua variabel yang diberikan dalam sistem pertidaksamaan linear dua variabel. Gunakanlah satu titik uji untuk menentukan daerah yang memenuhi setiap pertidaksamaan linear dua variabel. Gunakan arsiran yang berbeda untuk setiap daerah yang memenuhi pertidaksamaan yang berbeda. Tentukan daerah yang memenuhi sistem pertidaksamaan linear, yaitu daerah yang merupakan irisan dari daerah yang memenuhi pertidaksamaan linear dua variabel pada langkah b.

Komentar

Postingan populer dari blog ini

Turunan Fungsi Perkalian dan Pembagian

1. Rumus Turunan Fungsi Perkalian f(x) = u.v f'(x)=u'v + uv' Keterangan : u' menyatakan turunan fungsi u v' menyatakan turunan fungsi v Contoh Soal Carilah turunan dari y= (2x 2  + x)(4x + 1) Pembahasan u = 2x 2  + x u’= 4x + 1 v = 4x + 1 v’= 4 y’ = u’v + uv’ y’ = (4x + 1)(4x + 1) + (2x 2  + x)(4) y’ = (16x 2  + 4x + 4x + 1)+(8x 2  + 4x) y’ = 24x 2  + 12x + 1 2. Rumus Turunan Fungsi Pembagian f(x) = u v f'(x) = u'v - uv' v 2 Contoh Soal Jika f(x) = (x 2  + 1) (x - 1) . Carilah turunan f'(x) ? Pembahasan u = x 2  + 1 u'= 2x v = x - 1 v' = 1 f'(x) = u'v - uv' v 2 f'(x) = 2x(x - 1) - (x 2  + 1)1 (x - 1) 2 f'(x) = 2x 2  - 2x - x 2  - 1 (x - 1) 2 f'(x) = x 2  - 2x - 1 (x - 1) 2 Contoh-contoh soal turunan dalam bentuk perkalian dan pembagian (tolong pahami ya gaes) Carilah turunan pertama f'(x) dari fungsi f(x) = x 2 (3x - 1) 5 Pembahasan ...

Pertidaksamaan Rasional

Selasa,  08  September 2020 Kelas X IPA1, X IPS 5, X IPA 3, X IPS 3 KD: 3.2     Menjelaskan dan menentukan penyelesaian pertidaksamaan rasional dan irasional satu variabel. 4.2    Menyelesaikan masalah yang berkaitan dengan pertidaksamaan rasional dan irasional satu variabel. Silahkan simak dan cermati video pada link di bawah ini: Catat di buku catatan dan silakan kirim melalui email sisoct31@gmail.com  https://youtu.be/0DzZdxHU7Nc

Fungsi komposisi

KD 3.6 Menjelaskan operasi komposisi pada fungsi dan operasi invers pada fungsi invers serta sifat-sifatnya serta menentukan eksistensinya   Indikator :  Menentukan definisi, sifat-sifat, dan hasil operasi komposisi fungsi Tujuan Pembelajaran : Peserta didik dapat menentukan definisi,  sifat-sifat,  dan hasil operasi komposisi fungsi Kelas : X IPS 2 Assalamu’alaikum Wr. Wb. Bagaimana kabarnya shalih shalihah? Semoga semuanya dalam keadaan sehat dan selalu dalam lindungan Allah SWT. Jangan lupa sholat dhuha dan dzuhurnya ya. Sebelum memulai pelajaran Matematika hari ini jangan lupa kita mengucapkan lafadz basmallah.. Hari ini Bu Siska akan memberikan materi tentang  Fungsi Komposisi  melalui link dibawah ini.. Latihan soal 1. Diketahui f(x) = x+2 , g(x) = -3x+1 , h(x) = x 2 - 1 . Tentukan (gofoh) (-1)! 2.  Diketahui f(x)= 2x+p dan g(x)=5x+120 jika gof (x) = fog (x) tentukan nilai p! Silahkan kirim catatan dan latihannya ke emal siskaok31@gmail.com Sem...